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Abstract, The USW! proro~!a!inn of !hp Carimir rttrc! rrfers !o !he prese~cc of forcer 
between uncharged macroscopic bodies due to the vacuum fluctuations. If  the macroscopic 
bodies are put in relative motion, the boundary conditions are continuously changed and 
this should lead to an emission of quanta out of the vacuum. The rate of emission is 
estimated in the simplest possible geometrical and kinematical situations; the effect is 
found to he easily calculable but very small because the macroscopic bodies are always 
extremely slow with respect to the speed of light. I t  is, however, possible that a resonant 
effect might enhance the process. 

1. Introduction 

The Casimir effect shows the appealing feature of relating forces acting on macroscopic 
bodies to typical features of quantum field theory [I]. Although this point of view can 
be an oversimplification, because the microscopic structure of the conductors is essential 
in establishing the boundary condition for the EM field, it can be kept at least for 
simple configurations and for low frequencies. 

Within this description we can also study a complementary aspect, i.e. the effect 
of a macroscopic motion on the quantum state. To be definite we can consider a plane 
capacitor with zero-point EM field inside and then let one of the plates be moved with 

Since there will be some mismatch between the vacua some photons will be found. 
The macroscopic motion is certainly extremely low with respect to the speed of light, 
which is the typical speed of the quantum system, so the adiabatic approximation 
should be fully justified and effective. 

The EM field shows some complications due to the gauge and polarization degrees 
of freedom; it may be useful, therefore, to start with a simplified model where these 
additional aspects are absent and the space is I D  and then turn to the real problem. 
Finally, a short comparison with previous treatments is presented. 

resped !a the other and inquire how the d d  Y;IC""E? is seen in this new COr?di!iOR. 

2. A toy model 

2.1. General features and steady motion 

This model is given by a massless and spinless field 4 satisfying the wave equation 
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with the boundary conditions 

+(f, 0 )  = + ( t ,  I )  =o. (2.2) 
The Lagrangian, the canonically conjugate momentum and the Hamiltonian are 

respectively: 

L = f  [ ' [ $ 2 - ( J 1 + ) z ]  dz  
,U 

(2.3) 

. 
H = f  [m2+(a.+)2]dz. 

The standard quantization condition is 

J d 
[ + ( t ,  z ) ,  $ ( t ,  z ' ) ]= i~(z-z ' ) .  (2.4) 

The task now is to study the problem on the segment [ O ,  I ]  by considering I a 
time-dependent variable. In this way the field variables acquire a new time dependence 
through the boundary conditions (equation (2.2)) and the Hamiltonian acquires a 
further dependence through the integration limit. 

The boundary conditions (equation (2.2)) suggest the representation 

+ = $1 9. sin m z l l  w = $1 p. sin m z / /  

with the inversion formulae 

q. = $ jo' +(z) sin m z / l  dz 

p " = ~ l d m ( z ) s i n r r n r / l d z .  
(2.5')  

The relations (2.5) and (2.5') allow us to calculate the explicit time variation of the 
mode operators q. and p.. 

' JPn p = I - .  ' J q n  q = I -  
" J l  " J l  

Taking into account the different dependencies on 1 we write 

The third term vanishes, precisely because of the boundary conditions, and some 
calculations, quite standard if lengthy, allow us to obtain the expression 

2mn 
J l  / " , + f l m  - n  

-I-ll",+"" %-- 1 
2 2 ,  . I  I", - (2.7) 

together with the completely analogous one for p. 
In the mode representation we have for the Hamiltonian the representation 

H =;E [pf+(m/ / ) 'q t ]  (2.8) 
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and for the derivative the expression 

which is reduced to the very simple form 

With the introduction of the absorption and emission operators 

It also results 

H = I 0. ( c;cn +f)  (2.10) 
J I  21 

The operator C' creates states whose energy is time dependent; this is the very idea of 
the adiabatic treatment [2]: the states follow the external parameters in their evolution 
but transitions are induced if the evolution is not infinitely slow. 

According to the usual formalism for the adiabatic approximation in the case of 
discrete spectra, we consider a state I?) evolving with the Schrodinger equation 

d 
d i  

i - I?) = HI?) 

and a set of 'adiabatic' eigenstates 

H l k ) =  &( /I lk) .  

For the projection coefficient 

we have the equation 

with 

(2.11) 

(2.11') 

Taking as an initial condition at f = 0, I = /, the vacuum state: 1") = 10) the only 
different state reached at first order is the two-particle state; the corresponding yo 
coefficient is 

(2.12') 

J !  
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When the transition probability is also small the correction to yo is small, so we 
take to this order yo= constant = I ;  if furthermore the speed of the external parameter 
is constant i =  U, one can calculate explicitly the expressions (2.12) and (2.12') and 
the transition probability from the vacuum to the two-particle state is obtained: 

Equation (2.13) completes the investigation of the model, in :he case of steady 
motion of one boundary; the factor U' in front means that for any realistic situation 
the transition probability will be very small, so the use of the first approximation is 
fully justified. 

7 7 V;hmtinnc romnnnrp .'.'.. . .O.U..".." U,." l r l O l l U l C r L  

It may be interesting to investigate the field configuration where one of the boundaries 
is vibrating so that I = a + b cos f i t .  In  this case the phase appearing in the adiabatic 
formulae (equations (2.11) and (2.11')) takes on a more complicated aspect: 

The expression in brackets may be expanded in series and it takes on  the general form 
t m  

g, eirn'. (2.15) 
r = - m  

In order to calculate y one must integrate the expression, remembering that I / / '  also 
gives rise to an expansion like equation (2.15); the integrand is still made up of periodic 
functions but for the case v ( n , + n , ) / s  =ar, in this situation in fact it results 

j~ a + s + b  e&''' 
a + s + b e ' " '  1 e = e  [ (2.16) 

so that in the integrand there appear some terms which are constant in f. These terms 
finally give a contribution which grows linearly with the total time f r - f , .  It is clear 
that for too large ff- I, the whole treatment cannot be correct; it is, however, true that 
there is the signal of a resonance where the transition is strongly enhanced. For every 
mode n the corresponding frequency varies between a n / ( a  + b )  and m / ( a  - b) ,  so 
L11G IGilG"L1111 q"'l"L"y io "GIIIIC: LUG LGDUII ( I I ICC CUllYLLlUll 'lppCarJ I" VI.  Ll lC  ~ C U " ' C L 1 I I Y L  

mean of the extreme frequencies. 

.L^ _^I :*. .I-'?..- .Le _^^^^^_^.  --..A:.:-.. "--"--~ .,. t." .L^ ..---"*-:.-", 

3. The real case 

ln ;he ;ea! case, as an:icipa:ed in ;he iE:rodGc&q .A,p coEsi&r - o r * l l d  p'U.LL,,*. n l i n ~  y."..- 

capacitor: the distance between the plates (to be varied) will be I and the plates will 
be two squares of side A, in every case A >> 1. One must get rid of the unphysical degrees 
of freedom of the EM field by a suitable choice of gauge. The most usual Coulomb 
gauge does not fit very well because if we vary /, at fixed A, the wavevectors allowed 
will vary in direction, which would result in momentum space in a time-varying gauge 
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condition. For this reason, calling z the direction orthogonal to the plates, the axial 
gauge A, = 0, which is unaffected by variations of I,  will be imposed [3]. 

Some notational conventions are used: the indices i, j run from 1 to 3, the indices 
a, b run from 1 to 2: 

&ah &ah3 UT = (v',v.)"2. 

The equations of motion for the vector and scalar potential are 

(J:-A)Ah -db(J,(p -J,A,) = O  

AQ = J.A.. 

From the Lagrangian 

L = i  (E2-E2)d3r  I 
= f  1 [ (A,  - J b q ) ( A h  - J,p)+(d,p)*- E2] d3r  

the conjugate momenta are derived: 

IIb =SLJSAb=(Ab-Jhq)=  -Eh (3.2) 

whereas 

E, = J . q .  (3.3') 

In terms of the conjugate momenta equation (3.2) simplifies a great deal, 
reducing to 

aip =a,,n, 
which can be solved in standard way: 

(3.2') 

G(:,  z ' )JbITb(z ' ,  rm)  d:' (3.4) 

where G is the Green function of d: with the correct boundary conditions for the 
problem. 

The Hamiltonian of the system is 

dz(II:(z)+E*(z))- dzdz'J,II.(z)G(z,z')J,n,(z') (3.5) 

with the magnetic field given by 

= &.bJuAh 

E, = -E.~J:A~.  

The general boundary conditions are 

II.(O, r b )  = no(/, r d  = 0 

B,(O, r b ) = B z ( 4 b ) = o  

(3.6) 

(3.6') 

(3.7) 
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but asking only for oscillating modes [41 we require 'cosine' conditions for E, and Ba 
which also imply 

(3.7') 

and in this way we get the explicit form for G 
21 1 
?r . n  

G ( z ,  z ' )  = -YET sin m z / /  sin mu'/ /  (3.8) 

since with this form d:G acts as unity for the functions vanishing at the boundaries. 
We expand the potential A and the conjugate momentum II. Since we are interested 

in the dynamics along the z-axis we take the usual plane-wave expansion in the x and 
y-directions. 

(3.10) 

With the same procedures used in the previous section it is possible to calculate the 
derivative of the mode operators: 

(3.11) 

the same for P. 
It is understood that P, Q and p are 2~ vectors. A simplification is obtained by 

introducing for every mode p. the tangent unit vector T,, =palp, and the normal 
U,, = E=&T* and the corresponding components of Q and P :  Q7 = Q.T,, and so on; note 
that T and Y do not depend on I so this operation commutes with the I-derivative. 

We may now collect all the results and give the form of the Hamiltonian and its 
derivative in terms of the mode operators?: 

.y {1pl"'(p)12+[! +(p!/rr!)2]~PyJ(p)/2 

,I P 

+ [P' + (mi ~ ) 2 1 1 Q l " 1 ( ~ ) 1 2  + (?in/  0'1 Q?'(p)I'} (3.12) 

it is now convenient to introduce the energy of the mode 

U;," = p 2 + ( v n / / ) 2  

t Needless to say, there is an intrinsic ultraviolet cut-off in the phenomenon because the condition of 
reflectivity for the boundaries cannot hold for very high frequencies. 
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and an /-dependent canonical transformation: 

which implements the transition from the axial gauge to the Coulomb gauge and brings 
the Hamiltonian to the standard form 

H = $  1 1 [~21Qb"'(~)12+/Pbn)(p))21 a = p, v. (3.14) 
P." 0 

It also gives: 

(3.15) 

The introduction of the usual emission and absorption operators 

makes explicit the action of the derivative of the Hamiltonian J H / J /  on the Fock 
states. In particular for the transition from the vacuum to the two-photon state we get 

(nip, n2-pJaH/alJO)=(21)-'[~,+ F2+ F3] 
y, =2(-l)"'+"'p2(o 1 2  0 ) - ' I 2  (3.16) 

.T2 = 2(-1)"~+"2(0,w*)"2 (3.16') 

r3 =2(-1)",+"2n,n,(r//)'(o,0,)-"~. (3.16") 

The first two terms are obtained for the p-polarization, the third for the u-polarization. 
This shows that the dynamics can be factorized into the different transverse modes, 

provided we keep the modes p and -p together, which is clearly required by the 
conservation of msmentum in the plane x-y. 

Now we calculate the transition amplitude from the vacuum to two-photon state, 
according to the adiabatic approximation. 

The projection coefficient from the initial vacuum to final two-photon state is 
obtained in the same way as in the previous section (see equations (2.11)-(2.13)): 

where we have 

(3.17) 

(3.18) 
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From now on we assume = U = constant<< 1, which is certainly true for every 
macroscopic motion; then the phase in (3.17) is very large, and through an application 
of the Riemann-Lebesgue lemma (see appendix) we can write 

(3.17') 1 I y,=-iu (ol+02)-'Fm (w ,+02)d l  - ( w , + w 2 ) - ' F w  I 
so that finally the transition probability is written as 

-2  2 
~ I Y A ~ =  u21(wi + ~ 2 )  F,II,+ ( W I  + ~ 2 ) - ~ F Z , l b - 2 ( ~ 1 +  o 2 ) - I F m I i , I  

X (ol+o2)-'F,lh cos; ( o l + w 2 )  dl. (3.19) 

Through the usual quantization condition p. = (27r/A)m0 we can connect this 
expression to a photon density. In fact it results that the number of photons of 
longitudinal wavenumber n per unit of transverse momentum squared and unit of 
transverse area is 

jl: 

1 d# 1 1 IYml2. A' dp2 - 4 x  e 

The cosine term oscillates very rapidly around zero as a function, for example, of 
lr so we tentatively drop it with respect to the other terms. In so doing we get, summing 
over a, 

-[2(o,W2)2-p2(o,-002)2+2p211r+. . . 
1 _ - = _ _  

A2 dp2 dN 471 u2 l 2  ' I  ( w , + o , ) ~  W , W ~  

In the case where pcc o we obtain a very relevant simplification, because the system 
behaves as if it has only one dimension, and the expression in equation (3.19) in fact 
becomes 

If we tried to sum over the longitudinal quantum numbers we would get a diverging 
expression like 

(3.20) 

but, as has already mentioned, there is always an ultraviolet cut-off. 
The above expressions require lr to remain different from 1,. The correct zero result 

for lr+ l ,  is reproduced in equation (3.19), where the oscillating term has not been 
dropped. The problem of finding the number of photons produced in the process of 
mutual motion of two plane parallel plates is solved by equation (3.19); the actual 
number is very small because we always have a term u2 in front, which for every 
macroscopic system is very small; this property makes all approximations well justified 
but, unfortunately, it also makes every experimental investigation very difficult. 

Since the phase related to the adiabatic treatment in this more realistic case is more 
complicated, a discussion of the possible resonance conditions is not feasible in detailed 
analytical form. It appears, however, very likely that conditions of such a kind may 
exist; it is.also clear that these conditions will unavoidably also depend, in particular 
if p is not negligible with respect to o, on the transverse dimension A whose role has 
essentially been ignored in all the previous discussion. 
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4. Conclusions and comparison with other treatments 

Since problems more or less strictly related to that studied in  this paper have been 
repeatedly considered it is necessary to present a comparison with the previous 
treatments. In the present paper the existence of two boundaries in relative motion is 
essential, so the comparison with situations where there is only one boundary is not 
straightforward; in those cases, in fact, it is evident that by Lorentz invariance, only 
the acceleration may possibly give rise to emission of quanta [5,6]. Moreover, looking 
at equation (2.13), one sees that when I,+m at fixed / , - l o  the transition probabilities 
calculated with constant speed of the boundary go to zero as they must. 

A paper where the system is very similar to the present one has been written by 
Castagnino and Ferraro [7], continuing a line of investigation initiated by Moore [SI. 
The way they deal with the problem is quite different, hut given the same physical 
starting-point the results are comparable; in particular their expression for the total 
number of particles looks like equation (3.20) of the present paper and the same can 
he said of the analogous result of [SI. The physical situation is the same because here 
the vacuum is set sharply at the initial time ti and the state is observed sharply again 
at 1,; in this sense one can speak of infinite accelerations. The logarithmic divergence 
is here considered unphysical due to the ultraviolet cut-off originating from the finite 
reflectivity of every physical surface. 

As already stated, in the present paper and in the quoted references, one foresees 
a tiny photon emission because of the smallness of the coefficient u2  or in every case 
of the macroscopic speeds; for such a reason the possibility of producing resonance 
conditions might he interesting because then the number of the emitted photons should 
increase with time, at least as long as the approximate calculations are trustworthy. 
In this context one may note that when p is not negligible but nevertheless small with 
respect to w a sort of ‘non-relativistic’ expansion of the type I+,. = m / l + p 2 1 / 2 m  
could make the analytical study of the resonance condition complicated hut not 
hopeless. 

Appendix 

For completeness the connection between equations (3.17) and (3.17’) is shown here. 
If we have 

T=]:dxF(x)expi\: U w(y)dy 

with w definite positive and U + 0, we define 

4 x 1  = ]: w(y) dy 

which, being monotonically increasing, can he inverted as 

x = X(.) xi = x(0) 

f :  
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if @(a)= F(x(a))(dx/da)  we also have 

The second term is O(u') and reverting to the original variables 
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